Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development
نویسندگان
چکیده
Kidney organogenesis is initiated with the formation of the pronephric kidney and requires Pax-2 gene function. We report here the cloning and characterization of Pax-2 cDNAs from the frog Xenopus laevis, a model system suitable for the study of early kidney organogenesis. We show that expression of Xenopus Pax-2 (XPax-2) genes was confined to the nervous system, sensory organs, the visceral arches, and the developing excretory system. DNA sequencing of XPax-2 cDNAs isolated from head and pronephric kidney libraries revealed seven novel alternatively spliced Pax-2 isoforms. They all retain DNA-binding domains, but can differ significantly in their C termini with some isoforms containing a novel Pax-2 exon. We investigated the spectrum of XPax-2 splice events in pronephric kidneys, animal cap cultures and in whole embryos. Splicing of XPax-2 transcripts was found to be extensive and temporally regulated during Xenopus embryogenesis. Since all investigated tissues expressed essentially the full spectrum of XPax-2 splice variants, we conclude that splicing of XPax-2 transcripts does not occur in a tissue-specific manner.
منابع مشابه
The role of XTRAP-γ in Xenopus pronephros development
We isolated and characterized the Xenopus translocon-associated protein XTRAP-γ, one of four subunits of the translocon-associated protein complex. TRAP has been proposed to aid the translocation of nascent polypeptides into the lumen of the endoplasmic reticulum, but this has not been demonstrated until now. XTRAP-γ was specifically expressed in the pronephros tubules of Xenopus laevis from st...
متن کاملRequirement of Wnt/β-catenin signaling in pronephric kidney development
The pronephric kidney controls water and electrolyte balance during early fish and amphibian embryogenesis. Many Wnt signaling components have been implicated in kidney development. Specifically, in Xenopus pronephric development as well as the murine metanephroi, the secreted glycoprotein Wnt-4 has been shown to be essential for renal tubule formation. Despite the importance of Wnt signals in ...
متن کاملEmbryonic expression of Xenopus SGLT-1L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney.
Plasma membrane proteins of the solute carrier family 5 (SLC5) are responsible for sodium-coupled uptake of ions, sugars and nutrients in the vertebrate body. Mutations in SLC5 genes are the cause of several inherited human disorders. We have recently reported the cloning and transport properties of SGLT-1L, a Xenopus homologue of the sodium-dependent glucose cotransporter 1 (SGLT-1) [Nagata et...
متن کاملXPteg (Xenopus proximal tubules-expressed gene) is essential for pronephric mesoderm specification and tubulogenesis
Retinoic acid (RA) signaling is important for the early steps of nephrogenic cell fate specification. Here, we report a novel target gene of RA signaling named XPteg (Xenopus proximal tubules-expressed gene) which is critical for pronephric development. XPteg starts to be expressed at the earliest stage of embryonic kidney specification and was restricted to the pronephric proximal tubules duri...
متن کاملPax-2 controls multiple steps of urogenital development.
Urogenital system development in mammals requires the coordinated differentiation of two distinct tissues, the ductal epithelium and the nephrogenic mesenchyme, both derived from the intermediate mesoderm of the early embryo. The former give rise to the genital tracts, ureters and kidney collecting duct system, whereas mesenchymal components undergo epithelial transformation to form nephrons in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mechanisms of Development
دوره 69 شماره
صفحات -
تاریخ انتشار 1997